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Abstract

We elaborate upon four major revelations in statis-

tical science toward improving traditional models for

decision-making in social science, in particular in eco-

nomics. These revelations concern "how to repair sta-

tistical inference procedures based on the notion of

p-values?","how to correctly obtain predictive mod-

eling?", "how to improve expected utility theory in

economics?", and "how to faithfully model economic

dynamics?".
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1 INTRODUCTION

If we ask "what is new in statis-
tical science at the dawn of the 21st
century?", we may not get a clear an-
swer, instead, we get either "big data",
or "data science"! and this sounds like
"until now, everything is �ne (as far as
statistical science is concerned), so that
let's face the challenging data-driven
problems (which, obviously, will be im-
portant for economic applications)".

Why new things are important in
any kinds of sciences, physical or so-
cial? Well, remember the dawn of the
last century: from Newton mechanics to
Einstein's relativity and quantum me-
chanics. If we just view data science as
the new things to focus on, we might
ignore the crucial fact that, as a com-
mon de�nition, data science is a com-
bination of mathematics, statistics and
computer science, so that the statistical
component in it is "�ne, until now". Are
statisticians arming with correct tools
and correct practices to participate in
a multi-e�ort project such as data sci-
ence?

Essentially, this paper is about re-
cent revelations concerning statistical
science, namely "how to repair statis-
tical inference procedures based on the
notion of p-values?", "how to correctly
obtain predictive modeling?", "how to
improve expected utility theory in eco-
nomics?", and "how to faithfully model
economic dynamics?", with the hope
to make econometricians (and statisti-
cians) aware of these important issues,
and to invite them to take a serious look
at current research a�orts.

2 REPAIRING STATISTICAL

INFERENCE

It should be well known by now that
the actual crisis in science was caused
mainly by the traditional use of Fisher's
notion of p-value in hypothesis testing
(in both Fisher and Neyman-Pearson
settings), e.g., [10], [17], [29], [41], [42],
[49], [52]. Unfortunately, while other
"inferential procedures" in statistical
science, such as point estimation and
con�dence or credible regions, are "log-
ically" justi�ed for practical uses, the
frequentist approach to hypothesis test-
ing based upon p-values has �nally re-
vealed its serious �aw, and has to be
dealt with seriously.

While hypothesis testing could be
placed within the more realistic setting
of model selection, it is at the heart
of statistical inference for "discovery of
new knowledge'. While hypothesis test-
ing can be carry out, at least logically
(say, in common sense reasoning), by
another approach, namely Bayesian ap-
proach (which is in fact prior to the
frequentist approach, and was "over-
turned" by the frequentist approach
only because of the addition of subjec-
tive prior information into the process,
an addition that frequentists considered
as "unscienti�c"), the frequentist ap-
proach still dominates (huge majority)
the teaching and practice of statistical
inference. Remember, an inference is
not based on some mathematical theo-
rems (as opposed to consistency of point
estimators), but simply on reasoning (or
logic). In other words, an inference pro-
cedure is a model for decision-making.
As such, its validity should be judged
on logical grounds.
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While it is clear that inference based
on p-values is illogical, it is still di�-
cult to convince the statistical commu-
nity as a whole to abandon it, so that
we can properly participate in social sci-
ence problems where statistics has an
essential role to play, such as data sci-
ence. This section is designed speci�-
cally to address this embarrassing situ-
ation, once for all.

Staying with p-values or resisting
against its �aw, is it by "tradition"?
Maybe not. If we talk about tradi-
tion, it should be Bayesian testing, and
not frequentist testing! It is not by
tradition, it simply steps on so many
toes. Debrouwer [17] put it simply "In
1974, Richard Feynman expressed his
worry about scientists who follow all the
forms of science, but not its spirit, and
compared this kind of science to a cult
[25]. What he described is painfully
close to the ritualized statistics of null
hypothesis signi�cance testing". For in-
formation about the "Cargo Cult Statis-
tics", see [21], [25], and the recent arti-
cle "Cargo-cult statistics and the scien-
ti�c crisis" by P.B. Stark and A. Saltelli
(July 2018), posted in Science.

Despite concrete evidence pointing
to the wrong doing of p-values for quite
some times, including [53], and espes-
cially ASA [52] with the clear message
"By itself, a p-value does not provide
a good measure of evidence regarding a
model or hypothesis", there are statisti-
cians trying to "defense" p-values, e.g.
[35], and those who tried to "save p-
values" by pushing the so-called signi�-
cance level 0.05 to 0.005 without recog-
nizing that, as shown below, the �aw of
p-values is not because of its thresholds.

Continuing using p-values in testing has
created a mess in important situations
such as simultaneous testings, e.g. [22].

Let's be clear, the notion of p-value,
as a measure of surprise, is useful (for
decision-making), but not enough (by
itself) to help us to reach a de�nite deci-
sion. What else do we need to add to the
p-value evidence to reasonably reach a
decision? Perhaps Minimum Bayes fac-
tors? or more honest and transparent
information in the works surrounding a
testing problem?

But why the "logic" underlying the
use of p-values in decision-making is not
logical?. Nowhere in any textbooks that
such a reasonable question was asked,
upfront, except one textbook [26] where
the authors said (p. 480) "At this point,
the logic of the z-test can be seen more
clearly. It is an argument by contra-
diction, designed to show that the null
hypothesis will lead to an absurd con-
clusion and must therefore be rejected".
Then followed in the last paragraph of
the last chapter (A closer look at tests
of signi�cance) of their textbook by (p.
562-563) "Nowadays, tests of signi�-
cance are extremely popular. One rea-
son is that the tests are part of an im-
pressive and well-developed mathemati-
cal theory. Another reason is that many
investigators just cannot be bothered to
set up chance models. The language
of testing makes it easy to bypass the
model, and talk about "statistical sig-
ni�cance" results. This sounds so im-
pressive, and there is so much math-
ematical machinery clanking around in
the background, that tests seem truly
scienti�c-even when they are complete

nonsense- St. Exupery understood this
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kind of problem very well:

"When a mystery is too overpowering,
one dare not disobey"
(The Little Prince [3])

See more writings on statistics from
D. Freedman, a probabilist turned
statistician, in [27], [28].

An argument by contradiction is
what statisticians labeled as "inverse
probability" argument. Let's be clear.
In mathematics, where the underly-
ing logic is a two-valued (true (1) or
false (0)), the proof by contradiction
(called "modus tollens" in logic) is this.
In Boolean logic, propositions (true ot
false) are represented as subsets of a
set. The (material) implication (A =⇒
B) = Bc∪A is equivalent to Bc =⇒ Ac,
since

(Bc =⇒ Ac) = (Ac)c ∪Bc

= A ∪Bc = Bc ∪ A = (A =⇒ B)

Thus, given A =⇒ B (an implication
which is true, i.e. having truth value 1,
such as in "if a function f(.) is di�er-
entiable, then f(.) is continuous"), we
can "prove" that Bc =⇒ Ac with truth
value 1 (here, "if f(.) is not continuous,
then f(.) is not di�erentiable"). The
modus tollens is valid only in two-valued
logic.

In [35], the author speci�cally
spelled out how the above modus tol-
lens was modi�ed to provide the "logic"
for p-values, in "defense of p-values",
as follows: "Statisticians are willing to
pay some chance of error to extract
knowledge using induction as follows:
If, given (A =⇒ B), then the existence
of a small ε such that P (B) < ε tells us

that A is probably not true". This is
translated into testing setting as : take
A = Ho, take ε = α. Assume that Ho is
true. If we observe X with P (X|Ho) <
α, then we "can" infer that Ho can be
rejected as improbable. In other words,
if Ho is true, then P (X|Ho) should be
"not small"; so that, by "inverse proba-
bility reasoning", if P (X|Ho) < α, i.e.,
P (X|Ho) is small (using a defuzzi�ca-
tion of the fuzzy set "small" on the unit
interval), they "infer" the negation of
Ho. Is this a valid logic? Well, consider
"if birds then �y", which is a "rule"
with exceptions in arti�cial intelligence,
a rule with truth value not necessarily
equal to 1. In fact, the rule is "by de-
fault, birds �y". Now penguins do not
�y, then penguins are not birds?! Here,
we cannot pretend that the rule has no
exceptions and apply classical logic. If
you roll a die twice and observe (6, 6),
don't you dare to conclude that the die
is not fair? As we have said earlier, a
small p-value P (X|Ho) only gives us a
measure of surprise (if the die is fair),
but by itself (as in ASA's statements
[52]), it cannot help us to reach a de-
cision. We should not view a "small"
p-value as an "evidence without doubt"
against Ho (leading to the rejection of
Ho). In summary, the notion of p-value,
as a model for decision-making, should
be abandoned, or at least repaired. We
need a logical inference procedure.

There are several proposed alterna-
tives to p-values, e.g., [2], [6], [11], [16],
[39], [36], [38]. As far as participat-
ing in data science is concerned, the
Bayesian testing (and model selection)
in Bayesian statistics seems attractive,
especially when using in machine learn-
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ing (see next section). Roughly speak-
ing, while P (X|Ho) cannot be used
to make a decision on Ho, P (Ho|X)
can. Speci�cally, the use of the Bayes
factor, as another model for decision-
making, is logical, at least in common
sense reasoning in arti�cial intelligence.
Thus, repairing the frequentist testing
"tradition" by teaching widely Bayesian
statistics seems to be a positive step in
education. In any case, the knowledge
of bayesian statistics is useful in cooper-
ative works with computer scientists in
data science.

3 IMPROVING PREDICTIVE

MODELING

Continuing with a speci�c, and im-
portant task that econometricians will
de�nitely involve, namely cooperating
in data science research with economic
applications in mind, let's discuss (or
remind) another "issue" in traditional
statistical practices which needs to be
repaired and enlarged as well. And that
is the confusion that explanation mod-
eling is the same as prediction modeling
(as exempli�ed in regression models).
A clari�cation of the di�erence between
these two modeling processes, as well
as an invitation to machine learning in
computer science (which de�nitely plays
an important role in data science) are
provided by [9] and [47] at the turn of
the century.

By tradition (again!), textbooks in
statistics present regression analysis as
the topic for prediction, with state-
ments such as "Regression analysis is
a statistical methodology that utilizes
the relation between variables so that

a response can be predicted from the
others". In other words, what stu-
dents have learned is this. Given data
on variables, it su�ces to model the
data-generating mechanism, say by a
goodness-of -�t by linear regression (by
least squares), and then use it to make
predictions. This teaching subsumes
that the explanation modeling (the �t-
ted linear model) is all we need, either
for explaining the causal mechanisms
that give rise to the data, or for predict-
ing future outcomes. We kill two birds
with one stone! And this "tradition" ig-
nores warnings such as "regression mod-
els should not be used for extrapolation
(extension a model beyond the range of
the data used to �t it), because it will
lead to error", but does preserve "cor-
relation is not causation"!

The message in [9], [47] is this. To
explain and to predict are two di�er-
ent things, and hence they need two
di�erent modeling processes. An im-
portant example of a predictive model-
ing is neural networks in machine learn-
ing (which can be viewed as a "model-
free" approach). In other words, it is
about time for statisticians to recognize
that they need to enlarge their tradi-
tional "toolkit" to investigate real world
problems, such as including Bayesian
statistics and machine learning algo-
rithms in their research, rather than
just staying with their gold standard
of classical inference (which has been
intimately linked to testing and draw-
ing conclusions from data guided by p-
values). Above all, inference and pre-
diction should be well understood. Re-
member, statistics is not just a set of
formulas and steps to follow!
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Our focus in this section is point-
ing out the following. Although things
might seem somewhat obvious, it takes
some extraordinary "actions" to change
people mind for the better: a ban of
NHST with p-values in [49] triggered
ASA to provide guidelines for handling
p-values in "traditional" statistical in-
ference, and a thought-provoking paper
like [9] to get our attention on the ne-
cessity to distinguish between explana-
tory models and the predictive models.
Both activities are healthy in scienti�c
spirit and should improve the e�ective-
ness of statistical science in any inte-
grated e�orts in social sciences, such as
economics.

4 IMPROVING EXPECTED

UTILITY FOR BEHAVIORAL

ECONOMICS

David Kreps concluded his book
"Notes on the Theory of Choice" [37]
(p. 198), in 1988, by the following para-
graph, referring to violations of stan-
dard models for decision-making un-
der uncertainty (von Neumann [50] and
Savage [45]) from data as experimental
evidence (noting that, to validate a deci-
sion model, psychologists "test that hy-
pothesis", not by using p-values, but by
observations, just like "tests" in physi-
cal science):

"These data provide a continuing
challenge to the theorist, a challenge to
develop and adapt the standard mod-
els so that they are more descriptive of
what we see. It will be interesting to see
what will be in a course on choice theory

in ten or twenty years time".

Well, that was in 1988, what do we

expect to write now a new textbook on
choice theory for business and economic
students, 30 years later?

This section aims at providing food
for thought toward an answer to this
question.

After the success of (natural) phys-
ical sciences (Newton, Einstein, quan-
tum mechanics), it was about time to
move on to social sciences, especially
economics. In fact, an investigation into
"the laws of thought" has been started
with Boole [8] much earlier. After pro-
viding the mathematics for quantum
mechanics [50], von Neumann moved on
to establish the mathematics of quanti-
tative economics [51] in which the cen-
tral ingredient is his notion of expected
utility, as a model of human decision-
making (under uncertainty), a model
that later statisticians called statistical
decision theory, e.g. [13]. Von Neu-
mann's model is widely used, of course,
in game theory, in all problems involv-
ing risk analysis, e.g., [5].

Two things need to be emphasized in
von Neumann's expected utility model.
First, the model is for "rational" agents.
It is not wrong, it is an approximation
(just like Newtonian mechanics is an ap-
proximation of general relativity). It is
an approximation to something else we
are going to reveal! With respect to ra-
tionality, here is what Stephen Hawking
observed [33], (p. 47):

"Economics is also an e�ective the-
ory, based on the notion of free will
plus the assumption that people evalu-
ate their possible alternative courses of
action and choose the best. That e�ec-
tive theory is only moderately successful
in predicting behavior because, as we all
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know, decisions are often not rational or
are based on a defective analysis of the
consequences of the choice. That is why
the world is in such a mess."

Second, the mathematical concept
of expected utilily is based upon Kol-
mogorov's formalism of general proba-
bility theory. It is interesting to note
that the mathematical foundations of
quantum mechanics [50] that he helped
to develop provide the setting for quan-
tum probability theory, but von Neu-
mann did not consider quantum prob-
ability in his expected utility theory
(say, using non-commutative integral
theory). Perhaps, there was no com-
pelling reason at the time to consider
quantum probability even it is simply
a generalization of Kolmogorov (com-
mutative) probability theory. A little
later, when Richard Feynman came to
the Berkeley Symposium on Probabil-
ity and Mathematical Statistics in 1951
([24]) to give a talk to let probabilists
and theoretical statisticians know that,
while the concept of chance is the same,
the calculus of probabilities in quantum
mechanics is di�erent than that of stan-
dard probability calculus, there was no
reaction in the probability community.
Again, this could be due to the fact
that there was no "compelling" reason
why such "strange" probability calcu-
lus could have a place in, say, "every-
day applied statistics". Well, it has to
wait untill 2013 for A. Gelman and M.
Bethancourt [30] to answer it positively
in "Does quantum uncertainty have a
place in everyday applied statistics?" by
"the generalized probability theory sug-
gested by quantum physics might very
well be relevant in the social science".

And, recently, quantum probability is
classi�ed as "physical chance", in "Ten
Great Ideas about chance", [20]. And
so, as we will see, "Nothing is so pow-
erful as an idea whose time has come"
(Victor Hugo).

Note also that, instead, at that
time, only few probabilists were inter-
ested in quantum probability, e.g., P.A.
Meyer [40] and K. R. Partharsarthy
[43], purely from a mathematical stand-
point. In fact, Meyer's seminar is very
speci�c, namely "Quantum Probability
for Probabilists".

Expected utility is a "model" for
decision-making in the sense that it
could model how people make decisions
in the face of uncerainty, especially in
economic environment. The validity of
a such model should be tested by psy-
chologists since psychology is the sci-
ence devoted to human behavior and
is based upon the thesis that humans
have free will so that they do not obey
physical laws. It turns out that von
Neumann's expected utulity model was
violated in experiments, e.g., [1], and
[23], leading to intensive research ever
since in order to extend it to more re-
alistic models, especially those involv-
ing non-additive models such as Cho-
quet integral expected utility. All such
e�orts aim at relaxing the additivity
of (Kolmogorov, or standard) probabil-
ity measures, i.e., replacing probabil-
ity measures by non-additive set func-
tions (viewed as cognitive uncertainty
measures and calculi), while staying
in the classical Boolean setting. The
2017 Nobel Memorial prize in economics
awarded to Richard H. Thaler is a tes-
timony of the emergence of behavioral
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economics. As we will see, the consid-
eration of quanum probability will de�-
nitely advance behavioral economics.

Recent experimental works, e.g.
[12], [31], [34], exhibit even more. Not
only that cognitive uncertainty mea-
sures are non-additive, they are non-
commutative, non increasing. As such,
the Boolean setting for de�ning un-
certainty measures is no longer suit-
able. Nothing is new under the sun?
Does this sound familiar? Remember
Richard Feynman in 1951? (recently,
we have remembered his "Cargo cult"
of 1974!). Although, economic analy-
ses follow classical physics so closely,
it is not clear why economists should
think about quantum mechanics (more
in the next section), in particular, quan-
tum probability calculus. But, we got
it for free! Quantum probability, [12],
[31], [40], [43], turns out to have all the
"properties" that psychologists have ob-
served in experiments. Without going
into details of how to build an expected
utility concept based on quantum prob-
ability (instead of Kolmogorov probabil-
ity) to improve von Neumann's original
decision-making model, in this paper,
we think it is more appropriate to invite
econometrcians to take a serious look at
quantum probability �rst.

What is quantum probability? Well,
it is simply a generalization of stan-
dard probability (a commutative one) to
a non-commutative probability. With-
out evoking a general road map in
non-commutative geometry (a la Alain
Connes), we follow David Hilbert's ad-
vice "What is clear and easy to grasp at-
tracts us, complications deter" to elab-
orate to statisticians on how to ex-

tend a commutative concept to a non-
commutative one.

Just like extending real numbers to
complex numbers, or ordinary sets to
fuzzy sets, the procedure is simple. If we
cannot extend a concept A directly to a
desired concept B, we seek an equiva-
lent concept C to A, which can be ex-
tended to B.

Let's �rst consider the simplest case
of Kolmogorov probability, namely the
�nite sample space, representing a ran-
dom experiment with a �nite number of
possible outcomes, e.g., a roll of a pair
of dice. A �nite probability space is a
triple (Ω,A, P ) where Ω = {1, 2, ..., n},
say, i.e., a �nite set with cardinality
n, A is the power set of Ω (events),
and P : A → [0, 1] is a probabil-
ity measure (P (Ω) = 1, and P (A ∪
B) = P (A) + P (B) when A ∩ B = ∅).
Note that since Ω is �nite, the set-
function P is determined by the den-
sity ρ : Ω → [0, 1], ρ(j) = P ({j}), with∑n

j=1 ρ(j) = 1. A real-valued random
variable is X : Ω → R. In this �nite
case, of course X−1(B(R)) ⊆ A. The
domain of P is the σ−�eld A of subsets
of Ω (events) which is Boolean (com-
mutative: A ∩ B = B ∩ A), i.e., events
are commutative, with respect to inter-
section of sets. We wish to generalize
this setting to a non commutative one,
where "extended" events could be, in
general, non commutative, with respect
to an "extension" of ∩.

For this, we need some appro-
priate equivalent representation for
all elements in this �nite proba-
bility setting. Now since Ω =
(1, 2, ..., n}, each function X : Ω →
R is identi�ed as a point in the
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(�nitely dimensional Hilbert) space Rn,
namely (X(1), X(2), ..., X(n))t, which,
in turn, is equivalent to a n × n
diagonal matrix with diagonal terms
X(1), X(2), ..., X(n). and zero outside
(a special symmetric matrix), i.e.,

X ⇐⇒ [X] =


X(1) 0

X(2)
0 . 0

0 .
0 X(n)


The set of such matrices is denoted

as Do which is a commutative (with re-
spect to matrix multiplication) subal-
gebra of the algebra of all n × n ma-
trices with real entries. As matrices
act as (bounded, linear) operators from
Rn → Rn, we have transformed (equiva-
lently) random variables into operators
on a Hilbert space.

In particular, for each event A ⊆ Ω,
its indicator function 1A : Ω → {0, 1}
is identi�ed as an element of Do with
diagonal terms 1A(j) ∈ {0, 1}.As such,
each event A is identi�ed as a (orthog-
onal) projection on Rn, i.e., an oper-
ator T such that T = T 2 = T ∗ (its
transpose/ adjoint). Finally, the den-
sity ρ : Ω → [0, 1] is identi�ed with the
element [ρ] of Do with nonnegative di-
agonal terms, and with trace tr([ρ]) =
1. An element of Do with nonnega-
tive diagonal terms is a positive op-
erator, i.e., an operator T such that
< Tx, x > ≥ 0, for any x ∈ Rn (where
< ., . > denotes the scalar product of
Rn). Such an operator is necessarily
symmetric (self adjoint). Thus, a proba-
bility density is a positive operator with
unit trace. Thus, we have transformed
the standard (Kolmogorov) probability

space (Ω,A, P ), with #(Ω) = n, into
the triple (Rn,Po, ρ), where Po denotes
the subset of projections represented by
elements of Do (i.e., with 0 − 1 diago-
nal terms) which represent "ordinary"
events; and ρ (or [ρ]), an element of Do,
is a positive operator with unit trace.

Now, keeping Rn as a �nitely dimen-
sional Hilbert space, we will proceed to
extend (Rn,Po, ρ) to a non commutative
"probabilty space". It su�ces to extend
D0, a special set of symmetric matrices,
to the total set of all n × n symmet-
ric matrices, denoted as S(Rn), so that
a random variable becomes an "observ-
able", i.e., a self-adjoint operator on Rn;
an "quantum event" is simply an arbi-
trary projection on Rn, i.e., an element
of P (the set of all projections); and the
probability density ρ becomes an arbi-
trary positive operator with unit trace.
The triple (Rn,P , ρ) is called a (�nitely
dimensional) quantum probability space.
We recognize that quantum probability
is based upon a new language, not real
analysis, but functional analysis (i.e.,
not on the geometry of Rn, but on its
non commutative geometry, namely lin-
ear operators on it).

Clearly, in view of the non commu-
tativity of matrix multiplication, quan-
tum events (i.e., projection operators)
are non commutative, in general.

Let's pursue a little further with this
�nite setting. When a random vari-
able X : Ω → R is represented by the
matrix [X], its possible values are on
the diagonal of [X], i.e., the range of
X is σ([X]), the spectrum of the ma-
trix (operator) [X]. For A ⊆ Ω, Pr(A)
is taken to be P ([1A]) =

∑
j∈A ρ(j) =

tr([ρ][1A]). More generally, EX =
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tr([ρ][X]), exhibiting the important fact
that the concept of "trace" (of ma-
trix/operator) replaces integration, a
fact which is essential when consid-
ering an in�nitely dimensional (com-
plex, separable) Hilbert space, such as
L2(R3,B(R3), dx) of squared integrable,
complex-valued functions.

The spectral measure of a ran-
dom variable X, represented by [X], is
the projection-valued "measure" ζ[X] :
B(R) → P(Rn) : ζ[X](B) =∑

X(j)∈B πX(j), where πX(j) is the (or-
thogonal) projection on the space
spanned by X(j). From it, the "quan-
tum" probability of the event (X ∈ B),
for B ∈ B(R) is taken to be P (X ∈
B) =

∑
X(j)∈B ρ(j) = tr([ρ]ζ[X](B)).

The extension of the above to ar-
bitrary (Ω,A, P ) essentially involves
the replacement of Rn by an in�nitely
dimensional, complex and separable
Hilbert space H. For details, see texts
[40], [43].

We have stated several times that
quantum probability is non commuta-
tive and non additive. We will make
these properties more explicit now.

Recall that a quantum probability
space is a triple (H,P(H), ρ), where
P(H) plays the role of quantum events,
and for p ∈ P(H), its probability is
given by tr(ρp). Recall that observables
are self adjoint operators on H, i.e., el-
ements of S(H).

The probability measure µρ(.) =
tr(ρ.) on P(H) is clearly non commu-
tative in general, since, for p, q ∈ P(H),
they might not commute, i.e., pq 6= qp,
so that tr(ρpq) 6= tr(ρqp). Of course,
that extends to non commuting observ-
ables as well.

At the experiment level, the sur-
prising non additivity of probability
is explained by the interpretation of
the Schrodinger wave function ψ(x, t)
as a probability amplitude, i.e., the
probability of �nding an electron in a
neighborhood dx of R3 (at time t) is
|ψ(x, t)|2dx. The well-known two-slit
experiment reveals that, for two dis-
tinct holes A and B, the probability of
�nding electrons when only A is open
is PA = |ψA(x, t)|2dx, and for B only
open, PB = |ψB(x, t)|2dx. When both
holes are open, waves interference leads
to ψA∪B(x, t) = ψA(x, t) + ψB(x, t), so
that PA∪B = |ψA∪B(x, t)|2 = |ψA(x, t) +
ψB(x, t)|2 6= |ψA(x, t)|2 + |ψB(x, t)|2.

It can be also seen from the proba-
bility measure µρ(.) = tr(ρ.) on P(H).
First, P(H) is not a Boolean algebra.
It is a non distributive lattice, instead.
Indeed, in view of the bijection between
projections and closed subspaces of H,
we have, for p, q ∈ P(H), p ∧ q is taken
to be the projection corresponding to
the closed subspace R(p)∩R(q), where
R(p) denotes the range of p; p∨ q is the
projection corresponding to the smallest
closed subspace containing R(p)∪R(q).
You should check p∧ (q ∨ r) 6= (p∧ p)∨
(p ∧ r) , unless they commute.

On (H,P(H), ρ), the probability of
the event p ∈ P(H) is µρ(p) = tr(ρp),
and if A ∈ S(H), Pr(A ∈ B) =
µρ(ζA(B)) = tr(ρζA(B)), for B ∈ B(R),
where ζA is the spectral measure of A
(a projection-valued measure on B(R)).
With its spectral decompostion A =∑

λ∈σ(A) λPλ, the distribution of A on

σ(A) is Pr(A = λ) = µρ(ρPλ), noting
that A represents a physical quantity.

Recall that on a Kolmogorov proba-
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bility space (Ω,A, P ), the probability is
axiomatized as satisfying the additivity:
for any A,B ∈ A;

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Now, on (H,P(H), ρ), where the "quan-
tum probability" Q (under ρ), de�ned
as, for the "quantum event" p ∈ P(H),
Q(p) = tr(ρp), does not , in general,
satisfy the analogue, for arbitrary p, q ∈
P(H),

Q(p ∨ q) = Q(p) +Q(q)−Q(p ∧ q)

i.e., Q(.) is not additive. This can be
seen as follows. For operators f, g ∈
S(H), their commutator is de�ned as

[f, g] = fg − gf

so that [f, g] 6= 0 if f, g do not commute
(i.e., fg 6= gf), and zero if they com-
mute. Then, you can check that

[p, q] = (p− q)(p ∨ q − p− q + p ∧ q)

exhibiting the equivalence

[p, q] 6= 0⇐⇒ p ∨ q − p− q + p ∧ q 6= 0

i.e., non commutativity is equivalent to
"non additivity" (of operators).

Now, as Q(p) = tr(ρp), and by addi-
tivity of the trace operator, we see that

p ∨ q − p− q + p ∧ q = 0

=⇒ tr(ρ(p ∨ q − p− q + p ∧ q)) =

Q(p ∨ q)−Q(p)−Q(q) +Q(p ∧ q) = 0

which is the analogue of additivity
for the quantum probability Q, for ex-
ample for p, q which commute.

The non additivity of quantum
probability arises since , in general,

p, q ∈ P(H) do not commute, i.e.,
[p, q] 6= 0. In other words, the non addi-
tivity of quantum probability is a conse-
quence of the non commutativity of ob-
servables (as self adjoint operators on a
Hilbert space).

5 IMPROVING FINANCIAL

DYNAMICS MODELING

As main approaches to �nancial
market dynamics are criticized in the
literature, mainly because they ignore
human factors (in the modeling pro-
cess), we report here a current e�ort
(e.g., [14], [15], [32], [48]) of placing �-
nancial dynamics within an appropriate
quantum mechanics formalism, namely,
Bohmian mechanics, [7], to improve
market dynamics modeling. Note that,
although the focus is on the modeling
of the dynamics of �nancial data, the
analysis can be extended to any types
of data in which the sources of their dy-
namics involve humans.

What we are aiming at is this. In
taking into account of all necessary
sources causing the �uctuations of our
observed data, we should get a more
faithful modeling of their "real" dynam-
ics, leading obviously to better predic-
tions. Again, just in the case of "quan-
tum decision-making", we will be in the
context of quantum mechanics. Up-
front, this last point has been noticed
previously, e.g., [4], [46].

As Stephen Hawking reminded us
generously several times that economic
predictions (which are the main goal
of econometrics) are only moderately
succssful, when we use actual statisti-
cal methods to model the data dynam-
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ics (i.e., to suggest statistical models
for time series of, say, �nancial data),
e.g., [39], perhaps, we "forgot" to in-
clude some other sources causing their
dynamics in our modeling processes?
An amazing analogy with physics could
be this. In modeling the dynamics of
falling objects to earth, we should not
"forget" that air exists! See also [18],
[19], [44]. We elaborate next on how to
apply quantum mechanics to bulding �-
nancial models.

When citing economics as an e�ec-
tive theory, Hawking [33] gave an ex-
ample similar to quantum mechanics in
view of the free will of humans, as a
counterpart of the intrinsic randomness
of particles. Now, the "o�cial" view
of quantum mechanics is that dynam-
ics of particles is provided by a "quan-
tum law" (via the Schrodinger's wave
equation), thus it is expected that some
"counterpart" of the quantum law (of
motion) could be found to describe eco-
nomic dynamics, based upon the fact
that under the same type of uncertainty
(quanti�ed by noncommutative proba-
bility) the behavior of subatomic parti-
cles is similar to that of �rms and con-
sumers.

But upfront, what we have in mind
is this. Taking �nance as the setting,
we seek to model the dynamics of prices
in a more comprehensive way than tra-
ditionally done. Speci�cally, besides
"classical" �uctuations, the price dy-
namics is also "caused" by mental fac-
tors of economic agents in the market
(by their free will which can be de-
scribed as "quantum stochastic"). As
such, we seek a dynamical model hav-
ing these both uncertainty components.

It will be about the dynamics of prices,
so that we are going to "view" a price
as a "particle", so that price dynamics
will be studied as quantum mechanics
(the price at a time is its position, and
the change in price is its speed).

So let's see what quantum mechan-
ics can o�er? Without going into to de-
tails of quantum mechanics, it su�ces
to note the following. In the "conven-
tional" view, unlike macroobjects (in
Newtonian mechanics), particles in mo-
tion do not have trajectories (in their
phase space), or put it more speci�-
cally, their motion cannot be described
(mathematically) by trajectories (be-
cause of the Heisenberg's uncertainty
principle). The dynamics of a particle
with mass m is "described" by a wave
function ψ(x, t), where x ∈ R3 is the
particle position at time t, which is the
solution of the Schrodinger's equation
(counterpart of Newton's law of motion
of macroobjects):

ih
∂ψ(x, t)

∂t

= − h2

2m
∆xψ(x, t) + V (x)ψ(x, t)

and where ft(x) = |ψ(x, t)|2 is the prob-
ability density function of the particle
position X at time t, i.e., Pt(X ∈ A) =�
A
|ψ(x, t)|2dx.
But, our price variable does have

trajectories! Its is "interesting" to
note that, we used to display �nancial
prices �uctuations (data) which look
like paths of a (geometric) Brownian
motion. But Brownian motions, while
having continuous paths, are nowhere
di�erentiable, and as such, there are no
derivatives to represent velocities (the
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second component of a "state" in the
phase space)!

Well, we are lucky since there exists
a non-conventional formulation of quan-
tum mechanics, called Bohmian me-
chanics [7] in which it is possible to con-
sider trajectories for particles! The fol-
lowing is su�cient for our discussions
here.

Remark. Before deriving Bohmian
mechanics and using it for �nancial ap-
plications, the following should be kept
in mind. For physicists, Schrodinger's
equation is everything: the state of a
particle is "described" by the wave func-
tion ψ(x, t) in the sense that the proba-
bility to �nd it in a region A, at time
t, is given by

�
A
|ψ(x, t)|2dx. As we

will see, Bohmian mechanics is related
to Schrodinger's equation, but presents
a completely di�erent interpretation of
the quantum world, namely, it is pos-
sible to consider trajectories of parti-
cles, just like in classical, determinis-
tic mechanics. This quantum formal-
ism is not shared by the majority of
physicists. Thus, using Bohmian me-
chanics in statistics should not mean
that statisticians "endorse" Bohmian
mechanics as the appropriate formula-
tion of quantum mechanics! We use it
since, by analogy, we can formulate (and
derive) dynamics (trajectories) of eco-
nomic variables.

The following leads to a new inter-
pretation of Schrodinger's equation.

The wave function ψ(x, t) is
complex-valued, so that, in polar form,
ψ(x, t) = R(x, t) exp{ i

h
S(x, t)}, with

R(x, t), S(x, t) being real-valued. The
above Schrodinger's equation becomes

ih
∂

∂t
[R(x, t) exp{ i

h
S(x, t)}] =

− h2

2m
∆x[R(x, t) exp{ i

h
S(x, t)}]

+V (x)[R(x, t) exp{ i
h
S(x, t)}]

from it partial derivatives (with respect
to time t) of R(x, t), S(x, t) can be de-
rived. Not only that x will play the role
of our price, but for simplicity, we take x
as one dimentional variable, i.e., x ∈ R
(so that the Laplacian ∆x is simply ∂2

∂x2
)

in the derivation below.
Di�erentiating

ih
∂

∂t
[R(x, t) exp{ i

h
S(x, t)}] =

− h2

2m

∂2

∂x2
[R(x, t) exp{ i

h
S(x, t)}]

+V (x)[R(x, t) exp{ i
h
S(x, t)}]

and identifying real and imaginary parts
of both sides, we get, respectively

∂S(x, t)

∂t
= − 1

2m
(
∂S(x, t)

∂x
)2

+V (x)− h2

2mR(x, t)

∂2R(x, t)

∂x2

∂R(x, t)

∂t
= − 1

2m
[R(x, t)

∂2S(x, t)

∂x2

+2
∂R(x, t)

∂x

∂S(x, t)

∂x
]

The equation for ∂R(x,t)
∂t

gives rise
to the dynamical equation for the
probability density function ft(x) =
|ψ(x, t)|2 = R2(x, t). Indeed,

∂R2(x, t)

∂t
= 2R(x, t)

∂R(x, t)

∂t
=

2R(x, t){− 1

2m
[R(x, t)

∂2S(x, t)

∂x2
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+2
∂R(x, t)

∂x

∂S(x, t)

∂x
]} =

− 1

m
[R2(x, t)

∂2S(x, t)

∂x2

+2R(x, t)
∂R(x, t)

∂x

∂S(x, t)

∂x
] =

− 1

m

∂

∂x
[R2(x, t)

∂S(x, t)

∂x
]

If we stare at the equation for ∂S(x,t)
∂t

(corresponding to the real part of the
wave function in Schrodinger's equa-
tion), then we see some analogy with
classical mechanics in Hamiltonian for-
malism.

Recall that in Newtonian mechanics,
the state of a moving object of mass m,
at time t, is described as (x,m

.
x) (posi-

tion x(t), and momentum p(t) = mv(t),
with velocity v(t) = dx

dt
=

.
x(t)). The

Hamiltonian of the system is the sum of
the kinetic energy and potential energy
V (x), namely H(x, p) = 1

2m
v2 +V (x) =

mp2

2
+ V (x). From it, ∂H(x,p)

∂p
= mp, or

.
x(t) = 1

m
∂H(x,p)
∂p

. Thus, if we look at

∂S(x, t)

∂t
= − 1

2m
(
∂S(x, t)

∂x
)2

+V (x)− h2

2mR(x, t)

∂2R(x, t)

∂x2

ignoring the term h2

2mR(x,t)
∂2R(x,t)
∂x2

for
the moment, i.e., the Hamiltonian
1
2m

(∂S(x,t)
∂x

)2−V (x), then the velocity of

this system is v(t) = dx
dt

= 1
m
∂S(x,t)
∂x

.
Now the full equation has the term

Q(x, t) = h2

2mR(x,t)
∂2R(x,t)
∂x2

, coming from
Schrodinger's equation, and which we
call it a "quantum potential", we follow
Bohm to interprete it similarly., leading
to the Bohm-Newton equation

m
dv(t)

dt
= m

d2x(t)

dt2

= −(
∂V (x, t)

∂x
− ∂Q(x, t)

∂x
)

giving rise to the concept of "trajec-
tory" for the "particle".

Remark. As you can guess, Bohmian
mechanics (also called "pilot wave the-
ory") is "appropriate" for modeling �-
nancial dynamics. Roughly speaking,
Bohmian mechanics is this. While fun-
damental to all is the wave function
coming out from Schrodinger's equa-
tion, the wave function itself provides
only a partial description of the dy-
namics. This description is completed
by the speci�cation of the actual posi-
tions of the particle, which evolve ac-
cording to v(t) = dx

dt
= 1

m
∂S(x,t)
∂x

, called
the "guiding equation" (expressing the
velocities of the particle in terms of
the wave function). In other words,
the state is speci�ed as (ψ, x). Re-
gardless of the debate in physics about
this formalism of quantum mechanics,
Bohmian mechanics is useful for eco-
nomics! Note right away that the quan-
tum potential (�eld) Q(x, t), giving rise

to the "quantum force" −∂Q(x,t)
∂x

, dis-
turbing the "classical" dynamics, will
play the role of "mental factor" (of eco-
nomic agents) when we apply Bohmian
formalism to economics.

With the fundamentals of Bohmian
mechanics in place, you are surely inter-
ested in a road map to economic appli-
cations!

The "Bohmian program" for appli-
cations is this. With all economic
quantities analogous to those in quan-
tum mechanics, we seek to solve the
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Schrodinger' s equation to obtain the
(pilot) wave function ψ(x, t) (represent-
ing expectation of traders in the mar-
ket), where x(t) is, say, the stock price
at time t; from which we obtain the
mental (quantum) potential Q(x, t) =

h2

2mR(x,t)
∂2R(x,t)
∂x2

producing the associated

mental force −∂Q(x,t)
∂x

; solve the Bohm-
Newton's equation to obtain the "tra-
jectory" for x(t). Note that, the quan-
tum randomness is encoded in the wave
function via the way quantum proba-
bility is calculated, namely, P (X(t) ∈
A) =

�
A
|ψ(x, t)|2dx. Of course, eco-

nomic counterparts of quantities such
as m (mass), h (the Planck constant)
should be spelled out (e.g., number of
shares, price scaling parameter, i.e., the
unit in which we measure price change).
The potential energy describes the in-
teractions among traders (e.g., com-
petition) together with external condi-
tions (e.g., price of oil, weather, etc...)
whereas the kinetic energy represents
the e�orts of economic agents to change
prices. For some recent empirical works,
see [48], [32].

Remark. When data (including eco-
nomic data) are available, we look at
them just as a sample of a dynamic pro-
cess, i.e., just examining on how they
�uctuated, and not paying enough at-
tention on where they came from. In
other words, when conducting empir-
ical research, regardless whether data
are "natural phenomenon" data or data
having also some "cognitive" compo-
nents (e.g., decisions from economic
agents/ investors, traders in markets),
we treat them the same way. Having
looked at data this way, we proceed (by
tradition) simply by proposing stochas-

tic models to model their dynamics (for
explanation and then prediction), such
as the well-known Black-Scholes model
in �nancial econometrics. Clearly the
geometric Brownian motion model (de-
scribing the stochastic dynamics of as-
set prices) captures randomness of nat-
ural phenomena, but does not incorpo-
rate anything related to the e�ects of
economic agents who are in fact respon-
sible for the �uctuations of the prices
under consideration. As such, does a
"traditional" stochastic model in econo-
metrics really describe the dynamics on
which all conclusions will be derived?

Stephen Hawking nicely reminded
us that, following natural sciences (i.e.,
physics), we should view economics (a
social science) as an "e�ective theory",
i.e., there is another important factor
to take into account when proposing a
model (not a "law" yet!) for dynamics
of economic variables, and that is deci-
sions of economic agents ("thinking in-
dividuals", from the existence of their
free will). Whether or not, partially be-
cause of this that behavioral economics
started getting attention of researchers.
Of course, the problem arises because,
so far, unlike, say, quantum mechanics,
predictions in economics were not that
successful (!), as Hawking nicely qual-
i�ed it as "moderate". Should we ask
"why?".

For example, �nancial economet-
rics is dominated by the so-called "ef-
�cient market hypothesis" under the
in�uence of P.A. Samuelson and E.F.
Fama, which is based upon the "as-
sumption" that investors act rationally
and without bias (and new information
appears at random, and in�uences eco-
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nomic prices at random). As a conse-
quence, using standard probability cal-
culus, martingales are models for dy-
namics of asset prices, resulting in the
conclusion that "trading on stock mar-
ket is just a game of chance (luck) and
not a game of skill", despite empirical
evidence revealing that "stock dynam-
ics is predictable to some degree".

It is all about prediction. But pre-
diction is a consequence of our modeling
process. Should we take a closer look at
the way we used to model �nancial dy-
namics? Obviously, we adapt (follow)
concepts and methods in natural sci-
ences to social sciences, but not "com-
pletely". The delicate di�erence be-
tween Newtonian mechanics and quan-
tum mechanics was ignored in econo-
metrics modeling. Of course, we do
not "equate" the intrinsic randomness
of particle motion with the free will of
economic agents's mind (in making de-
cisions). But, if, unlike Newtonian me-
chanics, quantum mechanics is random
so that, dynamics, trajectories of par-
ticles should be formulated di�erently,
then the same spirit should be used in
economic modeling.

But as Richard Feynman pointed
out to us [24], when dealing with the
randomness of particles, we need an-
other probability calculus. Of course
that was his only message to proba-
bilists and statisticians, without know-

ing that later standard probability and
statistics invade empirical research in
economics. The quantum probability
calculus seems strange (i.e., not appli-
cable) to standard statistical practices,
because quantum probability exhibits
"nonadditivity" and "noncommutativ-
ity". Well, Hawking did tell us that
we have to pay attention to psycholo-
gists because they are there precisely to
help econometricians! Both nonadditiv-
ity and noncommutativity of a measure
of �uctuations were discovered by psy-
chologists, invalidating expect utility in
the �rst place. The shift to nonadditive
measures (in human decision-making af-
fecting economic data) has been started
long time ago, but it looks like a sep-
arate e�ort only for decision theory,
with no incorporation into econometrics
analysis. As pointed out in this present
paper, nonadditive measures, such as
Choquet capacities, are not adequate
as a measure of �uctuations (of eco-
nomic data) since they are still increas-
ing set functions, and commutative.
It is right here that we should follow
physics "completely" by using quantum
probability calculus in economic analy-
sis. Recent literature shows promising
research in this direction. Our hope, in
an exposition such as this, is that those
econometricians who are not yet aware
of this revolutionary vision, will to start
to consider it seriously.
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